THE STRUCTURAL ELUCIDATION OF AMINOGLYCOSIDE ANTIBIOTICS, SANNAMYCINS A AND B

Sir:

Sannamycins A and B are new aminoglycoside antibiotics produced by *Streptomyces sannanensis* strain KC-7038 sp. nov.

The production, isolation, physico-chemical and biological properties of sannamycins have been described previously¹⁾. In this communication, the structural elucidations of these antibiotics are described.

Sannamycins A (1) and B (2) are obtained as a colorless powder and show no definite melting points. The former (1) shows $[\alpha]_D^{25} + 120.5^{\circ}$ (c 1, H₂O) and the latter (2) shows $[\alpha]_D^{25} + 78^{\circ}$ (c 0.5, H₂O). The formulae C₁₇H₃₅N₅O₅ and C₁₅H₃₂N₄O₄ were established for 1 and 2 by mass spectrometry, ¹³C NMR spectra and elemental analysis.

The mass spectrometry of 1 or 2 showed a highly intensity peak at m/e 143. The ¹H NMR spectra of 1 and 2 in D₂O showed three methyl groups and one anomeric proton signal, as shown in Table 1.

The most significant difference between 1 and 2 is the marked deshielding of one of the N-methyl resonances in 1. On the basis of their physical properties and their empirical formulae, which coincide with those of sporaricins A and B² respectively, we assumed that sannamycins A and B were similar to the sporaricins A and B and fortimicins A and B3). Alkaline hydrolysis of 1 (145 mg, 0.37 mmol) with 1 N Ba(OH)2 (20 ml) under reflux for 4 hours afforded 2 (60 mg) and glycine. These facts proved that 1 and 2 were pseudodisaccharides and 1 was the mono glycylated analog of 2.

Acetylation of **2** (664 mg, 2 mmol) with acetic anhydride in methanol by standing overnight at room temperature gave the

tetra-N-acetyl derivative (3) quantitatively, m/e 500 M⁺, $[\alpha]_{23}^{p_3} + 189^{\circ}$ (c 1, H₂O).

Methanolysis of 3 (500 mg, 1 mmol) with 6 N hydrogen chloride in anhydrous methanol (20 ml, 80°C, 8 hours in a sealed tube) followed by re-N-acetylation afforded three spots except for unreacted 3 on silica-gel thin-layer chromatography developed with chloroform - methanol (8:1). The reaction mixture was evaporated under reduced pressure and chromatographed on a column of silica gel. The column was developed with chloroform - acetone (1:2) to give a methyl N-acetyl- α -glycoside (4, 120 mg, $[\alpha]_{10}^{24} + 142^{\circ}$ $(c 1, H_2O), m/e 258 M^+, Anal. C_{12}H_{22}N_2O_4)$ and the anomer (5, 52 mg, $[\alpha]_{U}^{24} 0^{\circ}$ (c 1, H₂O), m/e 258 M⁺) as colorless syrups and a colorless solid of an N-acetylaminocyclitol (6, 201 mg, $[\alpha]_{D}^{24} + 108^{\circ} (c \ 1, \ H_{2}O), \ m/e \ 274 \ M^{+})$ as shown in Fig. 1.

Comparison of the ¹³C NMR spectra data of

1 and 2 with those of purpurosamine-containing antibiotics suggests the sugar moieties of sannamycins A and B to be 6-N-methylpurpurosamine C, known as a component of sagamicin⁴⁾ (gentamicin C_{2b}). Then we synthesized methyl 2,6-di-N-acetyl-6-N-methylpurpurosamine C ($[\alpha]_{25}^{25}$ +135° (*c* 1, H₂O)) from methyl N-benzyloxycarbonyl- α -D-glucosaminide using the TIPSON COHEN method⁵⁾ as shown in Scheme 1 in an overall yield 36%. This synthetic compound was found to be identical with 4 obtained from sannamycin B in specific rotation, IR and ¹H NMR spectra.

Treatment of 6 (200 mg, 0.78 mmol) with 4 N sodium hydroxide (12 ml) at 110°C for 5 hours afforded the aminocyclitol (7, 117 mg), $[\alpha]_D^{34} - 44^{\circ}$ (*c* 1, H₂O), *m/e* 190 M⁺, Anal. C₈H₁₈N₂O₃·H₂O. As shown in Tables 1, 2 and 3, the structure of 7 was shown to be 2-deoxyfortamine or its mirror image by the ¹H and ¹³C NMR spectra of 7.

In order to prove the structure and absolute configuration of 7, 2-deoxyfortamine was afforded by the methanolysis of 6-O-(6-azido-2-N-benzyloxycarbonyl-6-deoxy- α -lividosaminyl)-1-Nbenzyloxycarbonyl-2-deoxyfortamine⁶ (8) prepar-

Proton	Chemical shifts (ppm)			
	Sanna- mycin A (1)	Sanna- mycin B (2)	Amino- cyclitol (7)	
1'	5.37	5.54		
2'	3.28	~3.4		
$\left\{ \begin{array}{c} 3' \\ 4' \end{array} \right\}$	1.8~2.4	1.8~2.4		
5'	~3.95	~4.5		
6'	3.10	3.10		
1	~3.95	3.51	3.27	
2ax.	2.39	~2.1	2.05	
2eq.	2.90	2.55	2.54	
3	4.68	4.23	4.23	
4	5.10	~3.4	3.48	
5	4.65	4.51	4.26	
6	4.31	4.03	3.83	
6' N-CH3	2.81	2.81		
4 N-CH_3	3.58	2.85	2.83	
O-CH ₃	3.90	3.91	3.87	
Gly. CH_2	4.04			

Table 1. Chemical shifts of ¹H NMR spectra.

Chemical shifts of ¹H NMR spectra were measured in D_2O using TMS as the external reference.

ed starting from lividamine. They exhibited identical mobilities on thin-layer chromatograms virtually, superimposable IR and NMR spectra and similar optical rotations.

The position of linkage of the aminosugar to the aminocyclitol was decided by the ¹³C NMR spectra of 2 and 7 (Table 3). The significant change in assignment for C₆ in 2 (85.3 ppm) and

Table 2. Coupling constants of ¹H NMR spectra.

Coupling	Coupling constants (Hz)			
	Sanna- mycin A (1)	Sanna- mycin B (2)	Amino- cyclitol (7)	
$\mathbf{J}_{1',2'}$	3.5	3.7		
$\mathbf{J}_{5',6'}$	6.0	5.5		
$\mathbf{J}_{1,2\mathrm{ax.}}$	4.0	10.0	12.0	
$\mathbf{J}_{1,2\mathrm{eq.}}$	3.0	4.2	4.5	
$\mathbf{J}_{2eq.,2ax.}$	13.5	14.5	14.0	
$J_{2a\mathrm{x.,3}}$	11.0	4.0	3.3	
$\mathbf{J}_{2\mathrm{eq.},3}$	4.2	4.5	4.0	
$\mathbf{J}_{3,4}$	11.5	4.0	3.3	
$\mathbf{J}_{4,5}$	3.0	4.2	4.5	
${f J}_{5,6}$	3.0	8.5	9.5	
$\mathbf{J}_{1, \ 6}$	3.0	8.5	9.5	

Table 3. Chemical shifts of ¹³C NMR spectra.

	Chemical shifts (ppm)		
Carbon	Sannamycin B (2)	Aminocyclitol (7)	
1'	102.4		
2′	50.9		
3'	27.5		
4'	29.3		
5'	69.5		
6'	56.1		
1	49.6	50.4	
2	31.6	31.3	
3	76.7	77.0	
4	63.7	63.8	
5	71.7	72.2	
6	85.3	76.4	
6'-N-CH3	36.2		
4-N-CH ₃	35.3	35.8	
O-CH ₃	57.3	57.3	

The ^{13}C -FT NMR spectra were taken with a JNM-FX-100 spectrometer.

Samples were dissolved in D_2O containing dioxane as the internal reference (67.4 ppm).

OCT. 1979

Scheme 1.

7 (76.4 ppm) was explained by the deshielding effect of glycosidation. From this result it was concluded that the position of linkage of 6-N-methylpurpurosamine C to the aminocyclitol was C-6 in 2.

The axial-equatorial coupling (J=3.7 Hz) of the C-1' proton in the ¹H NMR of **2** established the α configuration of the glycoside.

Thus, the absolute structure of **2** was determined to be 6-O-(2-amino-2,3,4,6-tetradeoxy-6-methylamino- α -D-*erythro*-hexopyranosyl)-2-deoxyfortamine as shown in Fig. 1.

The structure of 1 was determined by comparison of the ¹H NMR spectra in 1 and 2 (Table 1). Down-field shifts were observed at the C-4 and N-methyl protons. The structure of sannamycin A is thus established in all stereochemical details and is shown in Fig. 1.

Sannamycin is the first N-methylpurpurosamine C containing compound produced by *Streptomyces* sp.

Acknowledgement

The authors wish to acknowledge Dr. H. UME-ZAWA, Institute of Microbial Chemistry, for his kind advice and encouragement throughout this work. Thanks are also due to Dr. O. HOSHINO, Science University of Tokyo, for the measurement of ¹³C NMR spectra. The authors also wish to thank Dr. T. ODA for his kind advice and valuable discussions.

> Isamu Watanabe Takeo Deushi Takashi Yamaguchi Kazuhiro Kamiya Masahito Nakayama Toshihito Mori

Tokyo Research Laboratories, Kowa Co., Ltd., Higashimurayama, Tokyo 189, Japan

(Received August 15, 1979)

References

- DEUSHI, T.; A. IWASAKI, K. KAMIYA, T. MIZO-GUCHI, M. NAKAYAMA, H. ITOH & T. MORI: New aminoglycoside antibiotics, sannamycin. J. Antibiotics 32: 1061~1065, 1979
- DEUSHI, T.; M. NAKAYAMA, I. WATANABE, T. MORI, H. NAGANAWA & H. UMEZAWA: A new broad-spectrum aminoglycoside antibiotic complex, sporaricin. III. The structures of sporaricins A and B. J. Antibiotics 32:187~192, 1979
- 3) EGAN, R. S.; R. S. STANASZEK, M. CIROVIC, S. L. MUELLER, J. TADANIER, J. R. MARTIN, P. COLLUM, A. W. GOLDSTEIN, R. L. DEVAULT, A. C. SINCLAIR, E. E. FAGER & L. A. MITSCHER: Fortimicins A and B, new aminoglycoside antibiotics. III. Structural identification. J. Antibiotics 30: 552~563, 1977
- 4) EGAN, R. S.; R. L. DEVAULT, S. L. MUELLER, M. I. LEVENBERG, A. C. SINCLAIR & R. S. STANASZEK: A new antibiotic XK-62-2. III. The structure of XK-62-2, a new gentamicin C complex antibiotic. J. Antibiotics 28: 29~34, 1975
- 5) UMEZAWA, S.; Y. OKAZAKI & T. TSUCHIYA: Studies on aminosugars. XXI. Synthesis of 3,4dideoxy-3-enosides and the corresponding 3,4dideoxysugars. Bull. Chem. Soc. Jap. 45: 3619~ 3624, 1972
- YAMAGUCHI, T.; Y. KYOTANI, I. WATANABE, S. SATO, Y. TAKAHASHI, M. NAGAKURA & T. MORI: Syntheses of sporaricin analogues, 2-deoxy-4-N-glycyl-6-O-(α-nebrosaminyl) fortamine and its 3-de-O-methyl compound. J. Antibiotics 32 (11): 1979 (in press)